
201

Chapter 11
Local Fault Injection

This chapter focuses on the approach and techniques used to test the security of local
applications. It begins by describing local resources and interprocess communication,
which make up a local application’s attack surface. After describing how to enumerate
the local resources an application depends on, this chapter describes methods of test-
ing several of those types of resources. It also describes how to test ActiveX objects,
command-line programs, and applications’ use of local files and shared memory.

Local Resources and Interprocess Communication
Modern operating systems offer a number of facilities for data input, sharing, and storage.
An application’s threat model (see Chapter 4, “Risk-Based Security Testing: Prioritizing
Security Testing with Threat Modeling”) must identify the local system resources that the
application depends on and identify which of those may be controlled or affected by an
attacker. We refer to this as the application’s local attack surface. For example, every appli-
cation depends on the executable file and shared libraries that make up the application’s

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 201

code. These files are typically protected by the operating system against modifica-
tion by unprivileged users through file system permissions and access control lists
(ACLs). However, if the application includes a directory that is writable by unprivi-
leged users in its shared library load path, a local attack may be possible by creat-
ing a rogue shared library in this directory. See Chapter 8, “Web Applications:
Common Issues,” in the section “Uploading Executable Content (ASP/PHP/bat),”
for more details on shared library load paths and this style of attack.

If the application depends on shared libraries that are loaded from outside the
operating system’s shared library directories, or if it uses the API functions
LoadLibrary (Win32) or dlopen (UNIX), these directories and how the application
loads libraries or plug-ins must be considered part of the application’s local attack
surface and must be tested. For example, the SAP DB database had a local privi-
lege escalation vulnerability through this mechanism.1 The database installed a
Windows service configured to run as SYSTEM, launched from a directory that
was writable by any user on the system. If a user placed a shared library named
NETAPI32.DLL in this directory, it would be loaded into the privileged service,
resulting in a privilege escalation vulnerability.

In the Internet age of rapid communication, files are seamlessly copied from Web
servers or file servers to local files and are opened by local applications. This move-
ment makes file parsing vulnerabilities much more serious when files that may have
been corrupted by a malicious user are opened in applications not hardened against
this sort of attack. For example, consider an application that processes files provided
by remote users such as a Web browser or e-mail client. If the application in question
opens potentially corrupted files provided by untrusted users, errors in the process-
ing of these files may result in an application crash or, even worse, code execution. In
this case, the application code that processes these files forms an important part of
the application’s local attack surface area and must be closely examined for vulnera-
bilities and tested using a technique such as file format fuzzing, as described later.

Windows NT Objects
A local application may also use a number of other resources, including command-
line arguments, environment variables, or interprocess communication objects
such as shared memory or semaphores. Windows NT-based operating systems, for
example, support a number of potentially shareable local resources that are often
called objects. These objects include files, devices, network sockets, shared memo-
ry segments, Registry keys, processes, threads, and more. Each of these objects
may have a name so that other processes can refer to it and an ACL defining the
object’s access permissions to other users of the system.

Chapter 11—Local Fault Injection

202

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 202

The NT Kernel Object Manager maintains a file system-like namespace for
these objects. A process may open an object by passing one of these names to a
system function such as CreateFile. You can browse this namespace by making
calls to the Windows NT Native API functions in NTDLL or by using a browsing
utility such as WinObj. WinObj is a freeware utility from Sysinternals Freeware. It
lists the NT Object Manager namespace and allows the user to browse the name-
space and query object attributes and permissions. Figure 11-1 shows the objects
and object directories in the namespace’s root directory.

These objects are managed inside the NT kernel, and a user process may not
manipulate them directly. The process may request indirect access, however, to a
system object through Windows API functions such as CreateFile, CreateProcess,
and CreateEvent. These functions return a 32-bit integer value that the process may
pass as a parameter to other API functions to refer specifically to the corresponding
NT object. This value, called an object handle, is unique within the process and refers
to an open or active NT object. The handle is also opaque, meaning that it is not
intended to be directly manipulated by the process and has meaning only to the
facilities under the hood of the Windows API.

Local Resources and Interprocess Communication

203

Figure 11-1 WinObj by Sysinternals

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 203

Handles and the objects they refer to are not necessarily private to the process
that created them. As mentioned previously, NT objects have an ACL that defines
what actions are allowed and by whom. At creation, the programmer may create an
ACL for the object, or else a default one is used. The default ACL may be more per-
missive than necessary. Depending on how the application uses this object, this may
present a security risk. For example, a shared memory segment could contain com-
plex data structures involving arrays, indexes, pointers, and memory buffer lengths.
If an attacker can modify these structures stored in a shared memory segment, she
could crash or take over another process using this shared memory segment. See
the section “Shared Memory” later in this chapter for a description of how to list,
examine, and test shared memory segments.

Two tools from Sysinternals Freeware let you list the open handles on the sys-
tem. Handle and Process Explorer, its graphical counterpart, list handles for a given
process or for all processes on the system (see Figure 11-2). You can use these tools
to identify NT object-based resources that an application depends on and view the
ACLs for them. If an application uses or creates an object that other users may
access, the application security architect must determine whether the access per-
missions can be tightened. For example, try to make all created objects accessible
only to the user who created them. If the resource must remain accessible to other
users, the application’s use of it should be scrutinized and tested where possible.

Chapter 11—Local Fault Injection

204

Figure 11-2 Process Explorer listing running processes

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 204

UNIX set-user-id Processes and Interprocess Communication
The security of locally executed programs is especially important under UNIX-like
operating systems where the executables can be marked to execute as set-user-id or
set-group-id. When these permissions are assigned to an executable, the executable
assumes the privilege of the owning user or group, respectively. They no longer
run under the privileges of the user who invoked them. Instead, they run under
the privileges of the user or group who owns the file. To allow unprivileged users
to perform controlled actions on the system that would normally require privi-
leged access, set-user-id (suid) root executables are commonly provided to perform
that functionality on behalf of the unprivileged user. These executables have his-
torically been the largest source of vulnerabilities in the UNIX family of
operating systems.

The central insecurity in suid executables is that the executable runs with a
higher privilege in an environment partially controlled by the unprivileged user.
The user may control command-line arguments, environment variables, open file
descriptors, and other resources that the privileged executable may inherit. If the
privileged executable improperly trusts or uses these resources, it may result in a
security vulnerability. Buffer overflows resulting from long command-line argu-
ments and environment variables have been very common historically, but there
have also been a number of subtle vulnerabilities resulting from the use of other
inherited resources, such as file descriptors and file mode mask (umask).

Under UNIX, new programs are launched through the fork/exec model. The
system call fork() creates a new process, and the system call exec() runs an exe-
cutable in the current process. To launch a new program, the program calls fork
to create a new process and then calls exec in the new (child) process to load and
run the new executable. The new program inherits a number of attributes from
the parent process:

■ Environment variables

■ Command-line arguments

■ Open file descriptors (except for those marked close-on-exec)

■ Process ID

■ Parent process ID

■ Process group ID

■ Access groups

■ Working directory

■ Root directory

Local Resources and Interprocess Communication

205

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 205

■ Controlling terminal

■ Resource usages

■ Interval timers

■ Resource limits

■ File mode mask

■ Signal mask

The most common type of local vulnerabilities under UNIX-like operating
systems are buffer overflows caused by improperly handling command-line argu-
ments and environment variables. The section “Command-Line Utility Fuzzing”
describes how to test local applications for these sorts of vulnerabilities. If the
application installs any set-user-id executables, it is crucial that they be tested
for these vulnerabilities. Even if the executable is not marked as set-user-id, it
may be launched with arguments crafted by a remote user and should be tested.
This often occurs, for example, when a user’s Web browser may automatically
launch small helper programs to handle downloaded files.

Threat-Modeling Local Applications
Threat-modeling local applications involves three basic steps:

■ Enumerate local resources used by the application

■ Determine access permissions of shared or persistent resources

■ Identify the exposed local attack surface area

The first step in threat-modeling a local application is enumerating the applica-
tion’s local resource dependencies. These may include command-line arguments
used to launch the application, environment variables, files, Registry values,
Windows stations and desktops, and synchronization primitives.

The best way to do this is to examine the application source code to identify
each resource that may potentially be used. This information is extremely valuable
to properly determine an application’s attack surface. Unfortunately, this informa-
tion is not often maintained, and the knowledge of the resources an application
requires may be distributed among multiple developers, each responsible for dif-
ferent components of the application. In cases like these, or when application
source code is unavailable, application behavior monitoring tools such as API
Monitor, Process Explorer, lsof, and ktrace may be the best way to enumerate the
local resources an application uses. API Monitor and lsof are discussed next. See

Chapter 11—Local Fault Injection

206

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 206

Chapter 4 for a more detailed discussion of how to use runtime monitoring tools
to identify the resources an application uses and depends on.

Enumerating Windows Application Resources
As discussed, Process Explorer and Handle can be used to identify the resources used
by Windows applications. Process Explorer and Handle list the resources currently in
use by an application. Many applications, however, check for the existence of files and
other resources or may use them periodically or briefly at startup. It is important to
identify the dependence on these resources as well. Tools that monitor and log
Windows API usage should be used to list all the resources an application uses over its
lifetime. A tool such as API Monitor (http://www.rohitab.com/apimonitor/index.html)
may be used for this.

API Monitor logs access to a large number of functions grouped into cate-
gories such as Processes and Threads, File I/O, Device Input and Output, and
Handles and Objects. API Monitor can be used to log API calls from a running
application or a newly launched one. Examining this log tells you what local
resources the application uses and how. For example, you can find temporary files
created by the application that may be susceptible to race-condition attacks or
other vulnerabilities in file usage.

As soon as you have a list of the local resources being used, you must identify
their access permissions. As discussed, most NT objects have an ACL that defines
what access is permitted by whom. You can examine an object’s permissions in
WinObj or Process Explorer. You also can observe the API function call used to
create this object and see if a security descriptor was provided for the object or
whether NULL was supplied for this parameter and a default security descriptor
assigned. Often the default security descriptor adequately protects the object, but
not always.

Enumerating UNIX Application Resources
UNIX operating systems typically include a large number of small tools for process
monitoring. For example, the tool lsof is included in most Linux distributions and
MacOS X and is an optional installation for Sun Solaris. lsof, whose name means
“list open files,” can be used to list the files and network sockets that a running
process is using. It is roughly analogous to Process Explorer for Windows. An
example of lsof usage is shown in Listing 11-1.

Threat-Modeling Local Applications

207

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 207

Chapter 11—Local Fault Injection

208

Li
st

in
g

11
-1

l
s
o
f

O
ut

pu
t o

f A
TS

Se
rv

er
 o

n
M

ac
O

SX
 1

0.
4

%

l
s
o
f

C
O
M
M
A
N
D

P
I
D

U
S
E
R

F
D

T
Y
P
E

D
E
V
I
C
E

S
I
Z
E
/
O
F
F

N
O
D
E

N
A
M
E

A
T
S
S
e
r
v
e
r

1
0
4

d
d
z

c
w
d

V
D
I
R

1
4
,
2

1
1
5
6

2
/

AT
SS
er
ve
r

10
4

dd
z

0r
VC
HR

3,
2

0t
0

51
76
47
40

/d
ev
/n
ul
l

AT
SS
er
ve
r

10
4

dd
z

1w
VC
HR

3,
2

0t
0

51
76
47
40

/d
ev
/n
ul
l

AT
SS
er
ve
r

10
4

dd
z

2w
VC
HR

3,
2

0t
23
18
60

51
76
47
40

/d
ev
/n
ul
l

A
T
S
S
e
r
v
e
r

1
0
4

d
d
z

3
r

P
S
X
S
H
M

0
x
0
3
4
2
6
9
e
4

4
0
9
6

o
b
j
=
0
x
0
3
5
1
1
f
7
0

A
T
S
S
e
r
v
e
r

1
0
4

d
d
z

4
r

P
S
X
S
H
M

0
x
0
3
4
2
4
9
2
4

4
0
9
6

o
b
j
=
0
x
0
3
4
7
d
a
2
8

A
T
S
S
e
r
v
e
r

1
0
4

d
d
z

5
u

V
R
E
G

1
4
,
2

2
2
9
3
7
6

3
9
3
9
1
3

/
L
i
b
r
a
r
y
/
C
a
c
h
e
s
/
c
o
m
.
a
p
p
l
e
.
A
T
S
/
5
0
2
/
f
i
l
e
t
o
k
e
n
.
d
b

A
T
S
S
e
r
v
e
r

1
0
4

d
d
z

6
u

V
R
E
G

1
4
,
2

1
2
6
9
7
6

3
9
3
9
1
5

/
L
i
b
r
a
r
y
/
C
a
c
h
e
s
/
c
o
m
.
a
p
p
l
e
.
A
T
S
/
5
0
2
/
f
o
n
t
s
.
d
b

A
T
S
S
e
r
v
e
r

1
0
4

d
d
z

7
u

V
R
E
G

1
4
,
2

4
0
9
6
0

3
9
3
9
1
6

/
L
i
b
r
a
r
y
/
C
a
c
h
e
s
/
c
o
m
.
a
p
p
l
e
.
A
T
S
/
5
0
2
/
q
d
f
a
m
s
.
d
b

A
T
S
S
e
r
v
e
r

1
0
4

d
d
z

8
u

V
R
E
G

1
4
,
2

4
0
9
6
0

3
9
3
9
1
7

/
L
i
b
r
a
r
y
/
C
a
c
h
e
s
/
c
o
m
.
a
p
p
l
e
.
A
T
S
/
5
0
2
/
a
n
n
e
x
.
d
b

A
T
S
S
e
r
v
e
r

1
0
4

d
d
z

9
u

V
R
E
G

1
4
,
2

5
6
1
2
8
3
6

3
9
3
9
1
8

/
L
i
b
r
a
r
y
/
C
a
c
h
e
s
/
c
o
m
.
a
p
p
l
e
.
A
T
S
/
5
0
2
/
a
n
n
e
x
_
a
u
x

A
T
S
S
e
r
v
e
r

1
0
4

d
d
z

1
0
r

V
R
E
G

1
4
,
2

1
1
3
5
5
3
0

5
4
5
2

/
S
y
s
t
e
m
/
L
i
b
r
a
r
y
/
F
r
a
m
e
w
o
r
k
s
/
A
p
p
l
i
c
a
t
i
o
n
S
e
r
v
i
c
e
s
.
f
r
a
m
e
w
o
r
k
/
V
e
r
s
i
o
n
s
/
A
/

F
r
a
m
e
w
o
r
k
s
/
A
T
S
.
f
r
a
m
e
w
o
r
k
/
V
e
r
s
i
o
n
s
/
A
/
R
e
s
o
u
r
c
e
s
/
S
y
n
t
h
D
B
.
r
s
r
c

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 208

From this lsof output, you can identify some of the local resources that
ATSServer depends on. For example, the output lists two POSIX shared memory
segments (type PSXSHM in the lsof output) in use and a number of files (type VREG).
If a user other than the process owner can modify any of these resources, they
should be tested using the methodologies described in the sections on file and
shared memory fuzzing.

To identify the command-line arguments that an application expects, you can
examine the call to the getopt() function:

int getopt(int argc, char * const argv[], const char *optstring);

To use getopt, the application passes a value, optstring, that encodes the command-
line switches it expects and whether it expects an argument with that option. For
example, rlogin calls getopt with an optstring of 8EKLde:l:, which indicates that
rlogin accepts boolean switches -8, -E, -K, -L, and -d, whereas options -e and -l
require arguments. Command-line switches that accept arguments are typically the
best options to fuzz, as demonstrated later. If you only have access to the application
binary, you can take advantage of the fact that the optstring follows a known for-
mat. You can use the strings command to identify ASCII strings in a binary file and
grep to search for output that matches what an optstring usually looks like:

% strings /usr/bin/rlogin | egrep ‘^[A-Za-z0-9:]+$’ | grep “:”

8EKLde:l:

The local resources that we have enumerated and found to be accessible by an
attacker form the application’s local attack surface. The local attack surface should
be documented in the application’s threat model and minimized wherever possi-
ble. The rest of this chapter discusses tools and techniques for locating security
vulnerabilities in local attack surface areas.

Testing Scriptable ActiveX Object Interfaces

Attack Pattern: ActiveX Objects
■ Identify application ActiveX objects that are safe for scripting.

■ Enumerate the methods and properties exposed by the objects.

■ Use COMbust or axfuzz to perform fault injection on object methods.

Testing Scriptable ActiveX Object Interfaces

209

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 209

ActiveX is a Microsoft standard that allows software components to be written
in and called from applications written in different programming languages. It is
the successor to (and builds on) previous technologies such as OLE and COM and
is used to implement Visual Basic controls and other plug-ins. ActiveX is also
often used to implement rich, extended behavior in Web applications. Microsoft’s
Internet Explorer Web browser allows sites (as permitted by the zones security
model) to supply a compiled ActiveX object to be downloaded and run within the
browser. Because these components are compiled native code, they can do any-
thing that an application can do to the user’s machine. This results in both high
levels of flexibility and a high risk of potential insecurity. An ActiveX object or con-
trol is a reusable software object that is implemented in an executable or shared
library. Settings in the system Registry give the object a unique identifier (CLSID)
and symbolic name (ProgID) so that other software may easily refer to and use the
object. The object may implement one or more interfaces, which define which
methods and properties the object supports. For more information on ActiveX, see
Microsoft’s online documentation in MSDN.2

An ActiveX control can be requested in an HTML page through the HTML
<OBJECT> tag or from a CreateObject() call in JavaScript or VBScript. If ActiveX
objects are allowed in the security zone assigned to the page, Internet Explorer
proceeds to determine whether the object is considered “safe for scripting.”3

Internet Explorer first determines whether the object implements the
IObjectSafety interface. The IObjectSafety interface contains a method called
SetInterfaceSafetyOptions that allows an ActiveX container to query if the
object is safe for scripting. If the object does not implement this interface, Internet
Explorer checks the Registry under the object’s CLSID’s Implemented Categories
section. Defined Registry keys may indicate that the object is safe for scripting. If
the IObjectSafety interface is not implemented, if the control returns unsafe for
any of these actions, or if the special Registry keys are not present, Internet
Explorer does not let the object be used.

In the default configuration for Internet Explorer 6, Internet sites may initialize
and script ActiveX objects that are already on the user’s system and are marked
safe for scripting. The user is prompted to download signed ActiveX objects, and
the downloading of unsigned ActiveX objects is disabled.

To ensure that a scriptable ActiveX object installed by a trusted site or applica-
tion cannot be abused by a hostile Web page, all its exposed methods must be
tested and secured. This should be done for any custom scriptable ActiveX objects
included with an application. The next section discusses identifying and testing
ActiveX objects marked safe for scripting.

Chapter 11—Local Fault Injection

210

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 210

Identifying “Safe” Scriptable Objects
A number of tools are available for examining ActiveX controls and COM compo-
nents. OLEView is a tool included with Microsoft Visual Studio that lists installed
ActiveX, COM, and OLE objects and allows the user to view their properties and
implemented interfaces. We use OLEView to determine whether a given ActiveX
object is scriptable and marked “safe.”

OLEView organizes all the OLE/COM objects on the system into a number of
component categories, including .NET, Active Scripting, and Safely Scriptable (see
Figure 11-3). We are most interested in the COM components marked safe for script-
ing because these are the ActiveX components that may be activated by a remote
Web page. If there is a serious vulnerability in one of these ActiveX components, the
remote page may be able to take full control of the user’s computer.

If you drill down into “Controls that are safely scriptable” (see Figure 11-4),
you can easily enumerate all the components on the system that may be used by
remote Web sites. Browsing through this list, you can examine individual controls
and even list their interface and methods, looking for “interesting” methods or
methods prone to security vulnerabilities (see Figure 11-5).

Identifying “Safe” Scriptable Objects

211

Figure 11-3 OLEView displaying component categories

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 211

Chapter 11—Local Fault Injection

212

Figure 11-5 Details of a third-party ActiveX component

Figure 11-4 Listing of ActiveX controls marked safe for scripting

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 212

A second tool you can use is axenum, part of the axfuzz project at
http://axfuzz.sourceforge.net. By default, axenum enumerates all installed COM com-
ponents on the system and queries them for the IObjectSafety interface and the
“safe” Registry keys. The tool provides a quick way to automatically identify security-
sensitive ActiveX controls. Listing 11-2 is a small sample of output from axenum. This
output, for the CrBlinds object, shows the CLSID for the object, tells you whether the
object is safe for scripting, and lists the object’s methods and properties.

Listing 11-2
Sample of axenum Output

> CrBlinds

{00C429C0-0BA9-11d2-A484-00C04F8EFB69}

IObjectSafety:

IO. Safe for scripting (IDispatch) set successfully

IDispatch:GetInterfaceSafetyOptions Supported=1, Enabled=1

ICrBlinds2:

long Capabilities() propget

...

The other tool included in the project, axfuzz, enumerates all the objects safe for
scripting and calls each available method with a 0 (NULL) value or long string for any
BSTR values. Because the testing performed by axfuzz is rather simplistic, we recom-
mend using something more thorough, such as COMbust (described in a moment).

Testing Object Interfaces

Manual Interface Testing
One of the best features of OLEview is its integrated interface browsing. If a
typelib is available for an object, OLEview displays the type information in
human-readable form. For example, Figure 11-6 shows the IDL type information
for a third-party scriptable ActiveX component.

You can use this interface information to manually test the methods to identify
their purpose and functionality. A simple way to do this is to create a Web page
with some VBScript that creates the object and invokes the object’s methods or
retrieves properties. Listing 11-3 tests an object called iTunesDetector. This object
can be used from a Web page to identify what version of iTunes (if any) is
installed on the computer.

Testing Object Interfaces

213

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 213

Listing 11-3
Simple Web Page Demonstrating Manual Invocation of ActiveX Methods

<html>

<head>

<title>iTunesDetector Test</title>

</head>

<body>

<script language=”VBScript”>

<!—

Dim itunes

Set itunes = CreateObject(“ITDetector.iTunesDetector.1”)

document.write(“IsiTunesAvailableAvailable: “ &
itunes.IsiTunesAvailable & “
”)

document.write(“IsITMSHandlerAvailable: “ &
itunes.IsITMSHandlerAvailable & “
”)

document.write(“iTunesVersion: “ & itunes.iTunesVersion & “
”)

Chapter 11—Local Fault Injection

214

Figure 11-6 Interface of a third-party ActiveX component

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 214

document.write(“IsiTunesInstallerAvailable: “ &

itunes.IsiTunesInstallerAvailable & “
”)

—>

</script>

</body>

Automated ActiveX Interface Testing
COMbust, released by Frederic Bret-Mounet at the BlackHat Briefings 2003, is a
tool for automatically enumerating and fuzzing an ActiveX object’s interface (see
Figure 11-7). It requires that the object be scriptable, which is often the case
because we are most interested in testing the security of objects that an untrusted
user may interact with.

COMbust requires either the ClassID or ProgId specifying the object to test.
For testing, you should use the CLSID or ProgId discovered in OLEview or
axenum. Without any other arguments, COMbust automatically enumerates the
interface to the object and begins testing each function provided by the object
until it causes a crash. For this reason, using the -o option is recommended.
This option causes COMbust to produce a batch file that runs COMbust on each
function independently. That way, if a crash is caused in one function, the
remaining functions are still tested. COMbust stops testing a function at the first
crash it causes in it. Figure 11-8 shows COMbust being run against a QuickTime
component installed with Apple’s iTunes software. This component was chosen

Testing Object Interfaces

215

Figure 11-7 COMbust usage

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 215

because it has a large number of methods and properties. This run of COMbust
did not find any crashes. When COMbust does find a crash, the line CRASH!!! is
displayed in the output, and COMbust stops further testing.

Evaluating Crashes
COMbust may turn up crashes that result from a number of conditions: null
pointer dereferences, buffer overflows, object initialization and state errors. Some
of these are more serious security vulnerabilities than others. For example,
addressing a potentially exploitable buffer overflow that would allow code execu-
tion should be prioritized over a simple null pointer dereference that causes only
denial of service. Chapter 12, “Determining Exploitability,” discusses in depth
how to evaluate how exploitable a program crash may be.

Fuzzing File Formats
Applications such as Web browsers, image viewers, and media players regularly
process files provided by untrusted remote users. The formats and encoding of
these files, especially those used for compressed images, video, and audio, are
quite complex and thus are difficult to parse securely. It is therefore essential that
the applications’ processing of these files be properly scrutinized and tested.

As an example of a common file format vulnerability, consider the following code
fragment. It is an example of a style of code commonly seen parsing binary file for-
mats. The file format may consist of a file header and a number of sections, each with
section headers. Each section header contains a section size field that describes how
many bytes of data are contained within that section. If the file format parsing code

Chapter 11—Local Fault Injection

216

Figure 11-8 Running COMbust

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 216

uses these values unchecked in a memory allocation request size or as an offset into
the file, a denial-of-service or memory trespass vulnerability may be likely. The fol-
lowing code does not check the section size field read from the file section header. It
reads file data into a heap-allocated data buffer without validating the size or check-
ing the return value of HeapAlloc. This presents several problems (see Listing 11-4).

Listing 11-4
A Common Binary File Format Parsing Vulnerability

FILE_HEADER fh;

SECTION_HEADER *sh;

ReadFile(hFile, &fh, sizeof(FILE_HEADER));

sh = HeapAlloc(fh.dwSectionSize + SIZEOF(SECTION_HEADER));

ReadFile(hFile, sectionData, fh.dwSectionSize);

Consider the case in which the value of the section size field read in the file header
is very large. If the allocation fails and a buffer cannot be allocated, HeapAlloc returns
NULL. When the application calls ReadFile with a nonzero size and a NULL buffer
pointer, the application crashes with an access violation. This causes an exception to be
generated that the application might catch and handle. If the application doesn’t han-
dle it, an application crash occurs, indicating a possible denial-of-service vulnerability.
However, if the section size field is set to be equal to 0 minus the size of the section
header, the HeapAlloc call allocates a 0-byte length buffer due to the integer arithmetic
overflowing and wrapping around 0. The subsequent call to ReadFile below it
attempts to write a large amount of data to the 0-length heap block, causing a heap
overflow. An attacker may exploit this vulnerability to achieve arbitrary code execution.

An application’s file format handling should be tested against improper and
malformed files. The test methodology should generate a series of malformed files
by mutating properly formatted files, generating random garbage files, and creat-
ing files likely to trigger errors handling boundary conditions. The application
should be tested against each file to ensure that it properly handles each one with-
out crashing or causing unexpected behavior. The next section describes automated
file corruption testing and some freely available file format testing tools.

File Corruption Testing
File corruption testing is a form of input fuzzing targeted at applications and
interfaces operating on binary input files. Common applications of file corruption
testing include testing image, font, and archive file format parsing.

File Corruption Testing

217

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 217

Testing an application’s handling of a binary file format may be performed at
several different levels. A straightforward yet labor-intensive approach is to manu-
ally create a series of files that have been corrupted in different ways and proceed
to attempt to use the file in the application being tested. This approach requires
little or no programming; the file corruption can be performed manually with a
hex editor or by a small Python script. With this approach, however, several issues
arise. For example, there may be a large number of test cases, and manually cor-
rupting the files and testing them may take too long—not to mention being mind-
numbingly boring.

Some level of automation can speed up this process of file creation and testing
to free the application penetration tester to do other, more interesting things.

Automated File Corruption
Binary file formats can be complicated, involving a large number of structures
with type, option, size, and offset fields that may have intricate interdependencies.
They may also contain file sections possibly involving compression or encryption.
Manually creating test cases requires in-depth knowledge of the file format. It also
may require “borrowing” a good deal of code from the application to be tested to
properly compress or pack data into the file format. Although this sort of code
reuse may save time, it may make some bugs difficult to find because the same
incorrect assumptions made in file parsing would be assumed in the file creation.
Luckily, by deliberately avoiding intimate knowledge of the file format, we can
sidestep this pitfall and create a generic binary file corruption test harness that
can uncover a good number of vulnerabilities quickly.

A simple tool to perform quick file format testing is Ilja van Sprundel’s
Mangle.4 Mangle overwrites random bytes in a binary file format’s header with
random values, slightly biased toward large and negative numbers. Mangle
requires a template file to mangle and the size in bytes of the file header. As an
example, let’s mangle a JPG file.

First, you need a sample JPG file. This example starts with a simple JPG file,
Test.jpg. First, you must copy the template file to a new file to be mangled, Test0.jpg.
Then you run Mangle on Test0.jpg to corrupt some bytes in the header. You give
Mangle two command-line arguments: the name of the file to mangle, and the num-
ber of bytes in the file header. Mangle mangles only bytes in what it thinks is the file
header. You specify 256 so that Mangle corrupts only some of the first 256 bytes in
the file. Last, you use the MacOS X command-line open command to open the JPG in
Preview.app. As shown in Figure 11-9, Preview.app is unable to open the mangled file.

Chapter 11—Local Fault Injection

218

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 218

% cp Test.jpg Test0.jpg

(Copy the template file to a new file)

% ./mangle Test0.jpg 256

(Mangle the new file)

% open Test0.jpg

(Try opening the mangled file)

In a real-world security testing scenario, this procedure would be automated to
generate a large number of test cases and minimize human interaction. Such test-
ing frameworks are often application-specific and are beyond the scope of this
book. Some tools are available to assist in automating file fuzzing and launching,
such as FileFuzz5 for Windows and SPIKEFile6 for UNIX.

Command-Line Utility Fuzzing
By performing command-line fuzzing, we focus on an area where there are most
likely to be exploitable vulnerabilities: command-line arguments and environment
variables on UNIX-like operating systems. These vulnerabilities are typically used
to attack local set-user-id root executables on UNIX operating systems. set-user-id
UNIX executables were described earlier in this chapter.

Earlier in this chapter, we described how to identify the command-line argu-
ments and environment variables an application uses. You will now use this
knowledge to test how applications handle invalid input in them.

Immunity ShareFuzz
ShareFuzz, written by Dave Aitel at Immunity, Inc., was one of the first released
local fuzzers. ShareFuzz uses shared library interposition to replace the definition
of getenv (the UNIX function to retrieve the value of an environment variable) in
the target process with its own implementation. This is done by creating a shim

Command-Line Utility Fuzzing

219

Figure 11-9 Error dialog from Preview.app

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 219

shared library and specifying it in the LD_PRELOAD environment variable to cause it
to be loaded in the target process. The ShareFuzz getenv returns a long string of A
characters for each variable, except for DISPLAY so as not to interfere with the
operation of X11-based applications.

One of the primary benefits of ShareFuzz is that it does not require any
knowledge of which environment variables an application uses because it auto-
matically detects when the application queries the environment for a variable and
returns false data. Another benefit of ShareFuzz is that it uses a shell script to
automate the process of locating set-user-id root executables and testing each of
them in succession. This can be used to quickly locate easily exploitable vulnera-
bilities on a commercial UNIX operating system.

First, you copy all the set-user-id root executables into a local directory:

% ./pullfiles.sh

Pulling all files into suid directory

find: cannot read dir /lost+found: Permission denied

find: cannot read dir /export/lost+found: Permission denied

...

Then you build the sharefuzz shared library:

% make

gcc -c -fPIC localeshared.c

echo linking

linking

ld -G -z text -o libd.so.1 localeshared.o

Now you can use it to fuzz executables in suid/:

% env LD_PRELOAD=./libd.so.1 suid/dtappgather

shared library loader working

...

GETENV: DTUSERSESSION

...

MakeDirectory: /var/dt/appconfig/appmanager/AAAAAAAAA... : File name

too long

From this sample ShareFuzz session, you can see that dtappgather uses a
particular environment variable to construct the name of a directory it attempts

Chapter 11—Local Fault Injection

220

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 220

to create. It also shows that the application identified the pathname as being too
long. This means that the application can properly handle long strings in this
environment variable. This gives you some information on how the application
uses the environment variable. You may begin testing how it treats file path ele-
ments such as directory separators and parent directory paths (/ and ..).

Brute-Force Binary Tester
Mike Heffner’s Brute Force Binary Tester7 is a fast local fuzzer meant to quickly test
a large number of executables for low-hanging vulnerabilities. It tests each exe-
cutable with a long string command-line argument, multiple long argument strings,
a long environment variable string, and a long string as input. Executed programs
are run in parallel, making fuzzing a large number of binaries fairly quick. However,
because the options tested are hard-coded, this tool may not uncover deeper vulner-
abilities in code that can be reached only with valid command-line options.

Listing 11-5
Example bfbtester Session on/usr/lib/sa/sadc

% ./bfbtester -a /usr/lib/sa/sadc

=> /usr/lib/sa/sadc

(setuid: 0)

* Single argument testing

* Multiple arguments testing

* Environment variable testing

Cleaning up...might take a few seconds

Listing 11-5 ran successfully without finding any vulnerabilities. If it had, the
output would have included *** Crash *** and a description of the input that
caused the crash.

CLI Fuzz
CLI Fuzz8 is a custom local fuzzer built to address some of the limitations of other
available tools. For example, other tools do not support “surgical fuzzing,” or the
inserting of fuzz strings into other fixed input. CLI Fuzz focuses on thoroughly
testing an executable’s command-line interface, but it requires the user to provide
the knowledge of what arguments and variables the executable uses. It also has a
number of features for testing an executable when the variables or commands it
expects are unknown (see Listing 11-6).

Brute-Force Binary Tester

221

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 221

Listing 11-6
CLI Fuzz Usage Summary

Command Line Fuzzer

Dino Dai Zovi <ddz@theta44.org>, 20050709

usage: ./clifuzz [-0 | -i <file>] [var=val ...] [exec [arg ...]]

options:

-0 Fuzz argv[0]

-e Fuzz currently defined environment variables as well

-i Pipe <file> as standard input to target executable

-o Show child standard output

-O Show child standard error output

To support controlled surgical fuzz input generation, a concise language was
devised to specify generated input test cases. This language is modeled after the
format string language used in the printf family of functions in the C program-
ming language standard library. It also takes some syntactical elements from
POSIX regular expressions.

The fuzz rule is a character string composed of plain characters, escape
sequences, and fuzz generator specifications. Plain characters are inserted as-is
into the output. Escape sequences are used to specify special characters such as
nonprintable characters or binary data. The escape sequences are identical to
those used in the C programming language. They are presented in Table 11-1.

Table 11-1

Fuzz Rule Escape Sequences

Escape Sequence Description

\e Writes an escape character

\a Writes a bell character

\b Writes a backspace character

\f Writes a form-feed character

\n Outputs a newline character

\r Outputs a carriage return character

\t Outputs a tab character

\v Outputs a vertical tab character

\’ Outputs a single-quote character

\\ Outputs a backslash character

\num Outputs the byte whose ASCII value is given in the three-digit octal
number num

Chapter 11—Local Fault Injection

222

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 222

\xhex Outputs the byte whose ASCII value is given in the two-digit hexa
decimal number hex

Fuzz generators are specified with a % (percent) character followed by a
character indicating which generator to use. These characters and their mean-
ings are defined in Table 11-2. An optional decimal number between the per-
cent and the fuzz generator specification indicates a repeat count. An optional
literal sequence between curly braces ({ and }) defines a default value that is used
when that fuzz generator is inactive. If a default value is not specified, a some-
what reasonable default is used. Finally, parentheses may be used to specify
blocks. Block length references can be used to output the length of those groups in
binary or as an ASCII decimal or hexadecimal string.

Table 11-2

Fuzz Generator Specifiers

Character Meaning

A ASCII “fuzz” string

C ASCII character

D Digit (0 to 9)

N 32-bit number as a string

X 32-bit number as a hex string

L Binary LONG (4 bytes)

S Binary SHORT (2 bytes)

B Binary BYTE

The fuzz rule language is perhaps best explained by some examples of using it
to construct input test cases for some well-known syntaxes. Let’s look at a common
ASCII-based protocol, HTTP. Here is the most basic HTTP 1.1 GET request to
retrieve the file index.html from a Web server:

GET /index.html HTTP/1.0<carriage return><newline>

Host: www.example.com<carriage return><newline>

You now go through each token and specify a fuzz generator to test it. You will
replace literal tokens and variables with ASCII fuzz string generators (%A) and
replace the digits in HTTP/1.1 with ASCII digit generators. You will also use escape
sequences to specify the unprintable carriage return and newline characters.
When you do this, you get this fuzz rule:

CLI Fuzz

223

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 223

%A{GET} %C{/}%A{index}.%A{html} %A{HTTP}/%D{1}.%D{1}\r\n

%A{Host}: %A{localhost}\r\n\r\n

A second example demonstrates using our rule language to generate binary
input test cases. Consider a simple binary file format consisting of a magic num-
ber to identify files of its type, a file length, a file offset where data begins, and
finally the file’s contents. The magic number, length, and offset are all 32-bit
LONG values. Our fictional file format is specified in Table 11-3.

Table 11-3

Simple Binary File Format

File Offset (Hex) Field Description

00 Magic Magic number; must be 0xdeadbeef

04 Length Length (in bytes) of data in data portion

08 Offset Offset in file of data portion

Offset Data Data, of length length beginning at file offset offset

The following is a fuzz rule specifying an input file containing 16 data bytes,
starting at file offset 12 (right after the header):

%L{\xde\xad\xbe\xef}%L{$L1}%L{\x00\x00\x00\x0c}(%16B{A})

Notice how parentheses are used to group the 16-byte data portion as a block and
output the length of that block as a binary LONG value earlier in the string.

As an example of its usage, consider the following simple invocation of CLI Fuzz:

% clifuzz -0e SOMEVAR=%A vulnprogram –%A{h} %A

Results:

Critical: 2

High: 1

Medium: 0

Low: 780

Normal: 0

This example tests a fictional program, vulnprogram, fuzzing argv[0] (usually the
name of the program being executed), each currently defined environment variable,
an additional environment variable SOMEVAR, and command-line argument parsing.

CLI Fuzz evaluates the exit status of the target program for each execution and
records them by severity, optionally logging or printing each result above a certain

Chapter 11—Local Fault Injection

224

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 224

severity. The severities are determined by the child process’s exit status. As shown
in Table 11-4, they range from normal severity, indicating a clean exit status, to
critical, indicating that the child process terminated with a bus error.

Table 11-4

CLI Fuzz Run Status Severities

Severity Description

Normal The child exited cleanly with status 0 (success).

Low The child exited with a nonzero status.

Medium The child terminated with a signal (besides SIGSEGV or SIGBUS).

High The child terminated with signal SIGSEGV (segmentation fault).

Critical The child terminated with signal SIGBUS (bus error).

At the end of the session, CLI Fuzz prints out a count of the number of execu-
tions that resulted in each severity.

Shared Memory
Shared memory is a form of interprocess communication supported on almost all
operating systems, including Windows and UNIX-like operating systems. Shared
memory facilities allow a range of memory addresses, the shared memory segment,
in one process to be visible to another. For one process to make data available in
another process on the same machine, all it has to do is write the data to the
shared memory segment. Any other process that has the shared memory segment
mapped will be able to use it immediately.

Under Windows NT-based operating systems, shared memory segments are
generally called shared sections. Shared sections are one type of Windows kernel
executive object (described earlier). You can identify them and their permissions
using WinObj (see Figures 11-10 and 11-11). Shared sections are listed under the
\BaseNamedObjects\ directory and can be grouped by sorting on the Type column
in WinObj.

Some tools to test shared sections were released by Cesar Cerrudo of
Argeniss Information Security at Black Hat Europe 2005.9 His command-line
tools include ListSS to list local shared sections (see Figure 11-12), DumpSS to
output the contents of the shared section memory, and TestSS to overwrite the
memory in a shared section. Many applications use shared sections for inter-
process communication. If the application being tested uses a shared section,
overwriting the section with DumpSS may cause the application to crash. Data

Shared Memory

225

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 225

Chapter 11—Local Fault Injection

226

Figure 11-10 WinObj listing active sections

Figure 11-11 WinObj section ACL

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 226

stored in shared sections may often include pointers and other complex data
structures. If an attacker can overwrite this data, he might be able to take con-
trol of the application.

Figure 11-12 shows that Windows 2000 has a number of shared sections used
internally by applications such as Internet Explorer. Any shared sections used by
third-party applications also appear in this listing.

As an example of testing a shared section, examine the section \BaseNamedObjects\
UrlZonesSM_ddz. First, dump the contents of the shared section with DumpSS, as

Shared Memory

227

Figure 11-12 ListSS listing shared sections

Figure 11-13 DumpSS dumps contents of shared section memory

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 227

shown in Figure 11-13. No ASCII data is visible in the section, so if you need further
information on the section contents, you should examine the output of DumpSS as
a hexadecimal byte dump.

Proceed by using TestSS to overwrite the entire shared section. As shown in
Figure 11-14, after you run TestSS, the contents of the shared section are replaced

with the ASCII X character (hexadecimal byte 0x58). If any application uses this
corrupted shared section, it may crash. If something crashes, you should examine
the crash and determine exploitability, as described in the next chapter.

Summary
This chapter discussed how to test local applications with fault injection, including
methodologies for testing ActiveX objects, file formats, command-line executables,
and shared memory segments. This chapter also described useful tools to help
with and automate this process.

The testing performed in this and previous chapters may have uncovered a
number of vulnerabilities. The next chapter discusses how to evaluate a vulnerabil-
ity’s exploitability and construct a proof-of-concept exploit to reproduce it.

Endnotes
1. http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2003-0938.
2. “Introduction to ActiveX Controls,” http://msdn.microsoft.com/workshop/

components/activex/intro.asp.

Chapter 11—Local Fault Injection

228

Figure 11-14 TestSS overwrites the shared section, and DumpSS shows that it has changed

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 228

3. “How Internet Explorer Determines if ActiveX Controls Are Safe,”
http://support.microsoft.com/kb/q216434/.

4. http://www.digitaldwarf.be/products/mangle.c.
5. http://labs.idefense.com/labs-software.php?show=3.
6. http://labs.idefense.com/labs-software.php?show=14.
7. http://bfbtester.sourceforge.net.
8. CLI Fuzz is available for free download on this book’s Web site,

http://www.softwaresecuritytesting.com.
9. “Hacking Windows Internals,” http://blackhat.com/presentations/

bh-europe-05/BH_EU_05-Cerrudo/BH_EU_05_Cerrudo.pdf.

Endnotes

229

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 229

Wysopal_Rev-Chapter 11.qxp 10/26/06 4:59 PM Page 230

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile ()
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

